Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Lancet Glob Health ; 11(1): e48-e58, 2023 01.
Article in English | MEDLINE | ID: covidwho-2159976

ABSTRACT

BACKGROUND: The WHO Strategic Advisory Group of Experts recommended that an extended interval of 3-5 years between the two doses of the human papillomavirus (HPV) vaccine could be considered to alleviate vaccine supply shortages. However, three concerns have limited the introduction of extended schedules: girls could be infected between the two doses, the vaccination coverage for the second dose could be lower at ages 13-14 years than at ages 9-10 years, and identifying girls vaccinated with a first dose to give them the second dose could be difficult. Using mathematical modelling, we examined the potential effect of these concerns on the population-level impact and efficiency of extended dose HPV vaccination schedules. METHODS: We used HPV-ADVISE, an individual-based, transmission-dynamic model of multitype HPV infection and disease, calibrated to country-specific data for four low-income and middle-income countries (India, Viet Nam, Uganda, and Nigeria). For the extended dose scenarios, we varied the vaccination coverage of the second dose among girls previously vaccinated, the one-dose vaccine efficacy, and the one-dose vaccine duration of protection. We also examined a strategy in which girls aged 14 years were vaccinated irrespective of their previous vaccination status. We used a scenario of girls-only two-dose vaccination at age 9 years (vaccine=9 valent, vaccine-type efficacy=100%, duration of protection=lifetime, and coverage=80%) as our comparator. We estimated two outcomes: the relative reduction in the age-standardised cervical cancer incidence (population-level impact) and the number of cervical cancers averted per 100 000 doses (efficiency). FINDINGS: Our model projected substantial reductions in cervical cancer incidence over 100 years with the two-dose schedule (79-86% depending on the country), compared with no vaccination. Projections for the 5-year extended schedule, in which the second dose is given only to girls previously vaccinated at age 9 years, were similar to the current two-dose schedule, unless vaccination coverage of the second dose is very low (reductions in cervical cancer incidence of 71-78% assuming 30% coverage at age 14 years among girls vaccinated at age 9 years). However, when the dose at age 14 years is given to girls irrespective of vaccination status and assuming high vaccination coverage, the model projected a substantially greater reduction in cervical cancer incidence compared with the current two-dose schedule (reductions in cervical cancer incidence of 86-93% assuming 70% coverage at age 14 years, irrespective of vaccination status). Efficiency of the extended schedule was greater than the two-dose schedule, even with a drop in vaccination coverage. INTERPRETATION: The three concerns are unlikely to have a substantial effect on the population-level impact of extended dose schedules. Hence, extended dose schedules will likely provide similar cervical cancer reductions as two-dose schedules, while reducing the number of doses required in the short-term, providing a more efficient use of scarce resources, and offering a 5-year time window to reassess the necessity of the second dose. FUNDING: WHO, Canadian Institute of Health Research Foundation, Fonds de recherche du Québec-Santé, Digital Research Alliance of Canada, and Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Female , Humans , Child , Adolescent , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Human Papillomavirus Viruses , Developing Countries , COVID-19/epidemiology , COVID-19/prevention & control , Canada , Cost-Benefit Analysis
2.
Clin Infect Dis ; 75(11): 1980-1992, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1927303

ABSTRACT

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , British Columbia/epidemiology , Quebec/epidemiology , COVID-19 Vaccines , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , RNA, Messenger
3.
BMC Med ; 20(1): 199, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1862132

ABSTRACT

BACKGROUND: As we are confronted with more transmissible/severe variants with immune escape and the waning of vaccine efficacy, it is particularly relevant to understand how the social contacts of individuals at greater risk of COVID-19 complications evolved over time. We described time trends in social contacts of individuals according to comorbidity and vaccination status before and during the first three waves of the COVID-19 pandemic in Quebec, Canada. METHODS: We used data from CONNECT, a repeated cross-sectional population-based survey of social contacts conducted before (2018/2019) and during the pandemic (April 2020 to July 2021). We recruited non-institutionalized adults from Quebec, Canada, by random digit dialling. We used a self-administered web-based questionnaire to measure the number of social contacts of participants (two-way conversation at a distance ≤2 m or a physical contact, irrespective of masking). We compared the mean number of contacts/day according to the comorbidity status of participants (pre-existing medical conditions with symptoms/medication in the past 12 months) and 1-dose vaccination status during the third wave. All analyses were performed using weighted generalized linear models with a Poisson distribution and robust variance. RESULTS: A total of 1441 and 5185 participants with and without comorbidities, respectively, were included in the analyses. Contacts significantly decreased from a mean of 6.1 (95%CI 4.9-7.3) before the pandemic to 3.2 (95%CI 2.5-3.9) during the first wave among individuals with comorbidities and from 8.1 (95%CI 7.3-9.0) to 2.7 (95%CI 2.2-3.2) among individuals without comorbidities. Individuals with comorbidities maintained fewer contacts than those without comorbidities in the second wave, with a significant difference before the Christmas 2020/2021 holidays (2.9 (95%CI 2.5-3.2) vs 3.9 (95%CI 3.5-4.3); P<0.001). During the third wave, contacts were similar for individuals with (4.1, 95%CI 3.4-4.7) and without comorbidities (4.5, 95%CI 4.1-4.9; P=0.27). This could be partly explained by individuals with comorbidities vaccinated with their first dose who increased their contacts to the level of those without comorbidities. CONCLUSIONS: It will be important to closely monitor COVID-19-related outcomes and social contacts by comorbidity and vaccination status to inform targeted or population-based interventions (e.g., booster doses of the vaccine).


Subject(s)
COVID-19 , Contact Tracing , Vaccination Coverage , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Comorbidity , Contact Tracing/statistics & numerical data , Contact Tracing/trends , Cross-Sectional Studies , Humans , Pandemics/prevention & control , SARS-CoV-2 , Social Behavior , Time Factors , Vaccination/statistics & numerical data , Vaccination/trends , Vaccination Coverage/statistics & numerical data , Vaccination Coverage/trends
4.
BMC Public Health ; 22(1): 1032, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1862120

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic, many countries, including Canada, have adopted unprecedented physical distancing measures such as closure of schools and non-essential businesses, and restrictions on gatherings and household visits. We described time trends in social contacts for the pre-pandemic and pandemic periods in Quebec, Canada. METHODS: CONNECT is a population-based study of social contacts conducted shortly before (2018/2019) and during the COVID-19 pandemic (April 2020 - February 2021), using the same methodology for both periods. We recruited participants by random digit dialing and collected data by self-administered web-based questionnaires. Questionnaires documented socio-demographic characteristics and social contacts for two assigned days. A contact was defined as a two-way conversation at a distance ≤ 2 m or as a physical contact, irrespective of masking. We used weighted generalized linear models with a Poisson distribution and robust variance (taking possible overdispersion into account) to compare the mean number of social contacts over time and by socio-demographic characteristics. RESULTS: A total of 1291 and 5516 Quebecers completed the study before and during the pandemic, respectively. Contacts significantly decreased from a mean of 8 contacts/day prior to the pandemic to 3 contacts/day during the spring 2020 lockdown. Contacts remained lower than the pre-COVID period thereafter (lowest = 3 contacts/day during the Christmas 2020/2021 holidays, highest = 5 in September 2020). Contacts at work, during leisure activities/in other locations, and at home with visitors showed the greatest decreases since the beginning of the pandemic. All sociodemographic subgroups showed significant decreases of contacts since the beginning of the pandemic. The mixing matrices illustrated the impact of public health measures (e.g. school closure, gathering restrictions) with fewer contacts between children/teenagers and fewer contacts outside of the three main diagonals of contacts between same-age partners/siblings and between children and their parents. CONCLUSION: Physical distancing measures in Quebec significantly decreased social contacts, which most likely mitigated the spread of COVID-19.


Subject(s)
COVID-19 , Physical Distancing , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Child , Communicable Disease Control/methods , Humans , Pandemics/prevention & control , Quebec/epidemiology , Schools
5.
Clin Infect Dis ; 75(1): e805-e813, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1708191

ABSTRACT

BACKGROUND: In Canada, first and second doses of messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were uniquely spaced 16 weeks apart. We estimated 1- and 2-dose mRNA vaccine effectiveness (VE) among healthcare workers (HCWs) in Québec, Canada, including protection against varying outcome severity, variants of concern (VOCs), and the stability of single-dose protection up to 16 weeks postvaccination. METHODS: A test-negative design compared vaccination among SARS-CoV-2 test-positive and weekly matched (10:1), randomly sampled, test-negative HCWs using linked surveillance and immunization databases. Vaccine status was defined by 1 dose ≥14 days or 2 doses ≥7 days before illness onset or specimen collection. Adjusted VE was estimated by conditional logistic regression. RESULTS: Primary analysis included 5316 cases and 53 160 controls. Single-dose VE was 70% (95% confidence interval [CI], 68%-73%) against SARS-CoV-2 infection; 73% (95% CI, 71%-75%) against illness; and 97% (95% CI, 92%-99%) against hospitalization. Two-dose VE was 86% (95% CI, 81%-90%) and 93% (95% CI, 89%-95%), respectively, with no hospitalizations. VE was higher for non-VOCs than VOCs (73% Alpha) among single-dose recipients but not 2-dose recipients. Across 16 weeks, no decline in single-dose VE was observed, with appropriate stratification based upon prioritized vaccination determined by higher vs lower likelihood of direct patient contact. CONCLUSIONS: One mRNA vaccine dose provided substantial and sustained protection to HCWs extending at least 4 months postvaccination. In circumstances of vaccine shortage, delaying the second dose may be a pertinent public health strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Canada , Health Personnel , Humans , Quebec/epidemiology , RNA, Messenger , Vaccines, Synthetic , mRNA Vaccines
6.
Int J Infect Dis ; 102: 254-259, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-893931

ABSTRACT

OBJECTIVE: The North American coronavirus disease-2019 (COVID-19) epidemic exhibited distinct early trajectories. In Canada, Quebec had the highest COVID-19 burden and its earlier March school break, taking place two weeks before those in other provinces, could have shaped early transmission dynamics. METHODS: We combined a semi-mechanistic model of SARS-CoV-2 transmission with detailed surveillance data from Quebec and Ontario (initially accounting for 85% of Canadian cases) to explore the impact of case importation and timing of control measures on cumulative hospitalizations. RESULTS: A total of 1544 and 1150 cases among returning travelers were laboratory-confirmed in Quebec and Ontario, respectively (symptoms onset ≤03-25-2020). Hospitalizations could have been reduced by 55% (95% CrI: 51%-59%) if no cases had been imported after Quebec's March break. However, if Quebec had experienced Ontario's number of introductions, hospitalizations would have only been reduced by 12% (95% CrI: 8%-16%). Early public health measures mitigated the epidemic spread as a one-week delay could have resulted in twice as many hospitalizations (95% CrI: 1.7-2.1). CONCLUSION: Beyond introductions, factors such as public health preparedness, responses and capacity could play a role in explaining interprovincial differences. In a context where regions are considering lifting travel restrictions, coordinated strategies and proactive measures are to be considered.


Subject(s)
COVID-19/transmission , SARS-CoV-2 , Travel , Adult , Aged , COVID-19/epidemiology , Canada/epidemiology , Humans , Middle Aged , Models, Theoretical , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL